Fill in the Blanks

Volumes of Revolution Around the Y-Axis

Question	Definite Integral	Integrate	Evaluate Upper and Lower Limits		Volume of Revolution
Find the volume of the solid formed when the curve $x^2=4y$ is rotated 360° around the y -axis between $y=1$ and $y=4$	$\pi \int_{1}^{4} 4y \ dy$	$\pi \left[\frac{4y^2}{2} \right]_1^4$	32π	2π	30π
Find the volume of the solid formed when the curve $x=\frac{2}{3}y^2$ is rotated 2π radians around the y -axis between $y=2$ and $y=3$	$\pi \int_2^3 \frac{4}{9} y^4 dy$	$\pi \left[\frac{4y^5}{45} \right]_2^3$	$\frac{108}{5}\pi$	$\frac{128}{45}\pi$	$\frac{844}{45}\pi$
Find the volume of the solid formed when the curve $x=\frac{1}{5}\sqrt{y^3}$ is rotated 360° around the y -axis between $y=0$ and $y=5$	$\pi \int_0^5 \frac{1}{25} y^3 dy$	$\pi \left[\frac{y^4}{100} \right]_0^5$	$\frac{25}{4}\pi$	0	$\frac{25}{4}\pi$
Find the volume of the solid formed when the curve $y=x^2-6$ is rotated 2π radians around the y -axis between $y=1$ and $y=\frac{3}{2}$	$\pi \int_{1}^{3/2} (y+6) dy$	$\pi \left[\frac{y^2}{2} + 6y \right]_1^{3/2}$	$\frac{81}{8}\pi$	$\frac{13}{2}\pi$	$\frac{29}{8}\pi$
Find the volume of the solid formed when the curve $x=3\sqrt{y}$ is rotated 360° around the y -axis between $y=2$ and $y=7$	$\pi \int_{2}^{7} 9y dy$	$\pi \left[\frac{9y^2}{2} \right]_2^7$	$\frac{441}{2}\pi$	18π	$\frac{405}{2}\pi$
Find the volume of the solid formed when the curve $y=2x^2-3$ is rotated 2π radians around the y -axis between $y=0$ and $y=4$	$\pi \int_0^4 \frac{y+3}{2} \ dy$	$\pi \left[\frac{y^2}{4} + \frac{3y}{2} \right]_0^4$	10π	0	10π