Crack the Code

Roots of Polynomials

Α	A quadratic has roots α and β . Given that $\alpha + \beta = 7$ and $\alpha\beta = -4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$	В	A quadratic has roots α and β . Given that $\alpha + \beta = -5$ and $\alpha\beta = 2$, find the value of $\alpha^2 + \beta^2$
С	α and β are roots of the equation $2z^2 + 7z - 8 = 0$. Find the value of $\alpha^2 \beta^2$.	D	A cubic has roots α , β and γ . Given that $\alpha + \beta + \gamma = -2$, $\alpha\beta + \beta\gamma + \gamma\alpha = 12$ and $\alpha\beta\gamma = 3$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
E	A cubic has roots α , β and γ . Given that $\alpha + \beta + \gamma = -\frac{3}{2}$, $\alpha\beta + \beta\gamma + \gamma\alpha = -4$ and $\alpha\beta\gamma = \frac{5}{2}$, find the value of $\alpha^{3}\beta^{3}\gamma^{3}$	F	α, β, γ and δ are roots of the equation $2z^4 - 11z^3 + 8z^2 - 16z - 5 = 0.$ Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$
G	$lpha, eta$ and γ are roots of the equation $z^3 - 15z^2 + 10z + 11 = 0$. Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	Н	α, β and γ are roots of the equation $2z^3 + 7z^2 - 12z - 8 = 0$. Find the value of $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$.
I	α and β are roots of the equation $2z^2 + 9z + 3 = 0$. Find the value of $\alpha^3 + \beta^3$.	J	A quartic has roots α , β , γ and δ . Given that $\sum \alpha = 2$, $\sum \alpha \beta = -1$ and $\sum \alpha \beta \gamma = 1$ and $\sum \alpha \beta \gamma \delta$, find the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$.
To get the three-digit code, add all your answers together.			