Reflections Using Matrices		
(a)	(b)	(c)
By considering the unit square, determine the matrix which describes a reflection in the x -axis. $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	Describe fully the single transformation represented by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\frac{3}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$	By considering the unit square, determine the matrix which describes a reflection in the line $y=-x$. $ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $
(d)	(e)	(f)
The point $(-4,2)$ is mapped onto the point (a,b) when reflected in the x -axis. Using matrix algebra, find the values of a and b . $ \binom{1}{0}\binom{-4}{2}=\binom{-4}{-2} $ $ a=-4,b=-2 $	The point (c,d) is mapped onto the point $(7,-5)$ when reflected in the line $y=-x$. Using matrix algebra, find the coordinates (c,d) . ${0 \choose -1}{c \choose d} = {7 \choose -5}$ $c=5, d=-7$	A triangle with vertices at $(0,5)$, $(4,3)$ and $(1,-1)$ is reflected in the line $y=x$. Use matrix algebra to find the coordinates of the vertices of the reflected triangle. $ \binom{0}{1} \binom{0}{5} = \binom{5}{0} \binom{0}{1} \binom{1}{0} \binom{4}{3} = \binom{3}{4} $ $ \binom{0}{1} \binom{1}{0} \binom{1}{1} = \binom{-1}{1} $ $ \binom{0}{1} \binom{1}{1} = \binom{-1}{1} $ $ \text{Vertices } (5,0), (3,4) \text{ and } (-1,1) $
(g)	(h)	(i)
A triangle with vertices at $(0,1)$, $(1,0)$ and $(3,2)$ is reflected so its vertices map to $(0,-1)$, $(-1,0)$ and $(-2,-3)$. Find the transformation matrix and the line of reflection.	The point $(-2,a)$ is mapped onto the point $(b,3)$ following a reflection in the line $x=0$. Use matrix algebra to find the values of a and b .	The point $(x, 3x - 7)$ is mapped onto the point $(y + 3, y)$ following a reflection in the line y -axis. Use matrix algebra to find the values of x and y . $ \binom{-1}{0} \binom{0}{1} \binom{x}{3x - 7} = \binom{y + 3}{y} $ $ x = 2.5, y = 0.5 $