

True or False?

Parallel and Perpendicular Lines

For each statement, circle the correct response.

1	The lines with equations $y=-2x+1$ and $y=-2x+7$ are parallel to each other	True	False
2	Two straight lines are parallel if their gradients multiply to give -1	True	False
3	The point $(2,3)$ lies on the line with equation $y = \frac{1}{2}x + 2$	True	False
4	The lines with equations $y=3x-5$ and $y=5-3x$ are perpendicular to each other	True	False
5	Straight lines with gradients -4 and $-\frac{1}{4}$ meet at 90°	True	False
6	The points $(5,-2)$ and $(1,7)$ lie on the line with equation $2x+y=8$	True	False
7	The lines with equations $y=\frac{2}{3}x+4$ and $y=-\frac{3}{2}x-1$ are perpendicular to each other	True	False
8	The lines with equations $y=-3x+1$ and $6x-2y=10$ are parallel to each other.	True	False
9	The straight lines with equations $5x+y=15$ and $y=-\frac{1}{5}x+\frac{8}{5}$ are perpendicular to each other	True	False
10	The line with equation $5x - 4y + 3 = 0$ is parallel to the line with equation $10y - 8x = 3$	True	False
11	The lines with equations $2x + 7y = 10$ and $14x = 4y + 17$ are perpendicular to each other and meet at the point $(1.5, 1)$	True	False