Calculations with Recurring Decimals
(a) Using algebra, show that

$$
0 . \dot{2}+0 . \dot{2} \dot{3}=\frac{5}{11}
$$

(b) Using algebra, show that

$$
1.3 \dot{8} \dot{1}-0 . \dot{8} \dot{1}=\frac{31}{55}
$$

(a) Using algebra, show that

$$
0 . \dot{5} \times 0 . \dot{5} \dot{4}=\frac{10}{33}
$$

(b) Using algebra, show that

$$
4 \times 0.8 \dot{5} \times 0 . \dot{1} \dot{5}=\frac{14}{27}
$$

(a) Using algebra, show that

$$
0 . \dot{7} \div 0.2 \dot{1}=3 \frac{13}{19}
$$

(b) Using algebra, show that

$$
0.3 \dot{5} \div 1.2 \dot{7}=\frac{32}{115}
$$

(a) Show that the mean of the three numbers

$$
0 . \dot{8}, 0.8 \dot{1} \text { and } 0 . \dot{8} \dot{1}
$$

can be written in its simplest form as a fraction $\frac{a}{b}$, where a and b are integers to be found.
(b) Using algebra, prove that the area of the trapezium shown is

$$
\frac{97}{330} \mathrm{~cm}^{2}
$$

(a) Using algebra, show that

$$
0 . \dot{2}+0 . \dot{2} \dot{3}=\frac{5}{11}
$$

(b) Using algebra, show that

$$
1.3 \dot{8} \dot{1}-0 . \dot{8} \dot{1}=\frac{31}{55}
$$

(a) Using algebra, show that

$$
0 . \dot{5} \times 0 . \dot{5} \dot{4}=\frac{10}{33}
$$

(b) Using algebra, show that

$$
4 \times 0.8 \dot{5} \times 0 . \dot{1} \dot{5}=\frac{14}{27}
$$

(a) Using algebra, show that

$$
0 . \dot{7} \div 0.2 \dot{1}=3 \frac{13}{19}
$$

(b) Using algebra, show that

$$
0.3 \dot{5} \div 1.2 \dot{7}=\frac{32}{115}
$$

(a) Show that the mean of the three numbers

$$
0 . \dot{8}, 0.8 \dot{1} \text { and } 0 . \dot{8} \dot{1}
$$

can be written in its simplest form as a fraction $\frac{a}{b}$, where a and b are integers to be found.
(b) Using algebra, prove that the area of the trapezium shown is

$$
\frac{97}{330} \mathrm{~cm}^{2}
$$

