Mixed Volume and Surface Area Problems		
(b)	(c)	(d)
A cylinder with height $h cm$ and radius $6 cm$ has the same volume as a sphere with radius 9 cm. Find the value of h .	A metal cylinder is to be melted down and turned into spheres with radius $3 \ cm$. The cylinder has a radius of $12 \ cm$ and a height of $25 \ cm$. How many whole spheres can be made?	A cone with slanted height 25 cm and radius 8 cm has the same curved surface area as a hemisphere. Find the radius r of the hemisphere.
$n = 20 \ cm$	100 spheres	r = 10 cm
(f)	(g)	(h)
A hemisphere with radius $2r$ has the same total surface area as a cylinder with radius r . Find the height of the cylinder in terms of r . h = 5r	A cone has a radius of $\frac{3}{2}x$ and a height of $3x$. A sphere has a radius of kx . The ratio of the volume of the cone to the volume of the sphere is 4 : 1. Find the value of k as a fraction in its simplest form. $k = \frac{3}{4}$	A hemisphere of radius $(r + 2)$ is attached to the base of a cone with radius $(r + 2)$ and slant height $5r$. The total surface area of the compound shape is 273π . Find the volume of the compound shape. $r = 5$ $V = \frac{1862\pi}{3}$
	A cylinder with height $h \ cm$ and radius $6 \ cm$ has the same volume as a sphere with radius $9 \ cm$. Find the value of h . $h = 20 \ cm$ (f) A hemisphere with radius $2r$ has the same total surface area as a cylinder with radius r . Find the height of the cylinder in terms of r .	A cylinder with height $h cm$ and radius $6 cm$ has the same volume as a sphere with radius $9 cm$. Find the value of h .A metal cylinder is to be melted down and turned into spheres with radius $3 cm$. The cylinder has a radius of $12 cm$ and a height of $25 cm$. How many whole spheres can be made? $h = 20 cm$ $100 spheres$ (f)(g)A hemisphere with radius $2r$ has the same total surface area as a cylinder with radius r . Find the height of the cylinder in terms of r . $h = 5r$ A cone has a radius of $\frac{3}{2}x$ and a height of $3x$. A sphere has a radius of kx . The ratio of the volume of the cone to the volume of the sphere is $4 : 1$. Find the value of k as a fraction in its simplest form.