(a)	(b)	(c)	(d)
(i) Plot the graph of $\begin{gathered} y=x^{3}-3 x+3 \\ \text { where }-2 \leq x \leq 2 \end{gathered}$	Solve $3 x^{2}-5 x-1=0$ giving your answers to 3 significant figures $x=5.54, x=-0.54$	Find the equation of the line that is perpendicular to $y=-3 x+1$ and passes through the point $(4,-2)$ $y=\frac{1}{3} x-\frac{10}{3}$	y is directly proportional to the cube of x. When $x=5, y=$ 25. (i) Find an equation for y in terms of x. $y=0.2 x^{3}$ (ii) Find the value of x when $y=12.8$ $x=4$
	(e)	(g)	(h)
$\begin{array}{\|l\|l\|l\|l\|l\|l} \hline 7 & -2 \\ 7 & -3 & & \\ \end{array}$	Find the gradient of the line segment joining $(1,-5)$ and $(-1,2)$ 7	Write $2 x^{2}-8 x-5$ in the form $a(x-b)^{2}+c$ $2(x-2)^{2}-13$	Use the graph to find an estimate of the gradient at the point where $x=5$
(ii) By plotting a straight line on the graph, find approximate \square		$2(x-2)^{2}-13$	
solutions to the equation $x^{3}-3 x+3=0.5 x+2$	(f)		
$\begin{aligned} & x^{3}-3 x+3=0.5 x+2 \\ & x=-2, x=0.3, x=1.7 \end{aligned}$	$\begin{gathered} \text { Simplify } \frac{5}{2 x}+\frac{x+1}{x}-\frac{3}{5 x} \\ \frac{10 x+29}{10 x} \end{gathered}$		

