Solving Harder Quadratic Equations in Context

(a)

The shape shown has an area of $13 \mathrm{~cm}^{2}$. All lengths on the diagram are in cm .
(i) Show that $5 x^{2}+3 x-14=0$

$$
\begin{gathered}
x^{2}+(4 x-1)(x+1)=13 \\
x^{2}+4 x^{2}+3 x-1=13 \\
5 x^{2}+3 x-14=0
\end{gathered}
$$

$4 x-1$
(ii) Hence, find the value of x and the dimensions of the shape.

$$
\begin{gathered}
(5 x-7)(x+2)=0 \\
x>0, \text { so } x=1.4
\end{gathered}
$$

Dimensions are $1.4 \mathrm{~cm}, 2.4 \mathrm{~cm}, 4.6 \mathrm{~cm}$

(c)

The trapezium shown has an area of $30 \mathrm{~cm}^{2}$. All lengths on the diagram are in centimetres.
(i) Show that $6 x^{2}+5 x-34=0$

$$
\begin{array}{r}
\frac{x+5+5 x+3}{2} \times(2 x-1)=30 \\
(3 x+4)(2 x-1)=30 \\
6 x^{2}+5 x-4=30 \\
6 x^{2}+5 x-34=0
\end{array}
$$

(d)

A right-angled triangle has sides of lengths $(x+1) \mathrm{cm},(3 x-2) \mathrm{cm}$ and $(4 x-3) \mathrm{cm}$ as shown.
(i) Show that $3 x^{2}-7 x+2=0$
$(4 x-3)^{2}=(x+1)^{2}+(3 x-2)^{2}$

$16 x^{2}-24 x+9=x^{2}+2 x+1+9 x^{2}-12 x-2$

$$
\begin{gathered}
6 x^{2}-14 x+4=0 \\
3 x^{2}-7 x+2=0
\end{gathered}
$$

(ii) Hence find the value of x and the length of the hypotenuse.

$$
(3 x-1)(x-2)=0
$$

$x=\frac{1}{3}$ or $x=2$, but lengths cannot be negative so $x=2$
Hypotenuse is 5 cm

