Mixed Volume and Surface Area Problems

(a)	(b)	(c)	(d)
The surface area of a sphere with radius 10 cm is equal to the curved surface area of a cylinder with the same radius as the sphere and height $h \mathrm{~cm}$. Find the height h. $h=20 \mathrm{~cm}$	A cylinder with height $h \mathrm{~cm}$ and radius 6 cm has the same volume as a sphere with radius 9 cm . Find the value of h. $h=27 \mathrm{~cm}$	A metal cylinder is to be melted down and turned into spheres with radius 3 cm . The cylinder has a radius of 12 cm and a height of 25 cm . How many whole spheres can be made? 100 spheres	A cone with slanted height 25 cm and radius 8 cm has the same curved surface area as a hemisphere. Find the radius r of the hemisphere. $r=10 \mathrm{~cm}$
(e)	(f)	(g)	(h)
A cylinder has a radius r and height $15 r$. A sphere has radius $3 r$. Find the ratio of the volume of the sphere to the volume of the cylinder in its simplest form. $12: 5$	A hemisphere with radius $2 r$ has the same total surface area as a cylinder with radius r. Find the height of the cylinder in terms of r. $h=5 r$	A cone has a radius of $\frac{3}{2} x$ and a height of $3 x$. A sphere has a radius of $k x$. The ratio of the volume of the cone to the volume of the sphere is $4: 1$. Find the value of k as a fraction in its simplest form. $k=\frac{3}{4}$	A hemisphere of radius $(r+2)$ is attached to the base of a cone with radius $(r+2)$ and slant height $5 r$. The total surface area of the compound shape is 273π. Find the volume of the compound shape. $\begin{gathered} r=5 \\ V=\frac{1862 \pi}{3} \end{gathered}$

