Fill in the Blanks Tree Diagrams for Dependent Events

Question	Tree Diagram	Probability
There are x blue counters and 4 red counters in a bag. Two counters are chosen at random without replacement. Complete the tree diagram and find expressions for each of the probabilities.		$P(B B)=\frac{x}{x+4} \times \frac{x-1}{x+3}$
		$P(B R)=\times$
		$P(R B)=\times$
		$P(R R)=\times$
There are 8 black pens and n green pens in a pencil case. Gloria chooses two pens at random from the pencil case. Complete the tree diagram and find expressions for each of the probabilities.		$P(B B)=\frac{8}{n+8} \times$
		$P(B G)=\times$
		$P(G B)=\times$
		$P(G G)=\times$
There are n biscuits in a tin. There are some digestives and five shortbreads. Ayyan takes two biscuits from the tin at random and eats them. Draw a tree diagram and find expressions for each of the probabilities.		$P(D D)=\times$
		$P(D S)=\times$
		$P(S D)=\times$
		$P(S S)=\times$
A jar contains x lime sweets and some pear sweets. The number of pear sweets is one more than the number of lime sweets. Two sweets are chosen at random. Draw a tree diagram and find expressions for each of the probabilities.		$P(L L)=\times$
		$P(L P)=\times$
		$P(P L)=\times$
		$P(P P)=\times$

