Algebra Revision

(a)	(b)	(c)	(d)	(e)
Make x the subject of the formula $y^{2}=\frac{a x-c}{x+1}$	y is inversely proportional to the cube root of x. When $x=27, y=2.5$. Find a formulae for y in terms of x.	Prove that $(2 n+3)^{2}+(2 n-1)^{2}$ is even for all positive values of n	The curve with equation $y=f(x)$ has a maximum point at $(2,7)$. Write down the coordinates of the maximum point of the curve with equation: (i) $y=3 f(x)$ (ii) $y=f(x-4)$	$\begin{aligned} & f(x)=\frac{x}{2 x+3} \\ & g(x)=1-6 x \end{aligned}$ Find $f g(x)$ in its simplest form
(f)	(g)	(h)	(i)	(j)
$\begin{aligned} & f(x)=\frac{2 x}{7}+1 \\ & \text { Find } f^{-1}(x) \end{aligned}$	Solve $\frac{x-1}{2}+\frac{3}{x}=3$	Solve $2 x^{2}-5 x>3$	Here are the first five terms of a sequence: $4,7,10,13,16, \ldots$ Find the sum of the $6^{\text {th }}$ to the $50^{\text {th }}$ term of this sequence.	The curve $y=2 x^{2}+\frac{32}{x}$ has one stationary point. Find the coordinates of this point.

