

Crack the Code

Volumes of Revolution

A	<p>The curve $y = x^3$ and the line $y = 2 - x$ meet at the point $(1, 1)$. The region R is bounded by the curve $y = x^3$, the line $y = 2 - x$ and the x-axis. Find the exact volume of the solid formed when R is rotated 360° about the x-axis.</p> $\frac{10}{21}\pi$	B	<p>The region R is bounded by the curve $y = 2\sqrt{x}$ and the line $y = x$. Find the exact volume of the solid formed when the region R is rotated 2π radians about the x-axis.</p> $\frac{32}{3}\pi$
C	<p>The region R is formed between the circle $x^2 + y^2 = 25$, the line $y = \frac{4}{3}x$ and the positive y-axis. Find the exact volume of the solid formed when the region R is rotated 2π radians about the y-axis.</p> $\frac{50}{3}\pi$	D	<p>The region R is bounded by the curve $y = \sqrt{x}$, the line $\frac{1}{2}x + y = 4$ and the positive y-axis. Find the exact volume of the solid formed when the region R is rotated 360° about the y-axis.</p> $\frac{256}{15}\pi$
E	<p>The region R is formed between the curves $y = x^2$ and $y = 3 - 2x^2$. Find the exact volume of the solid formed when the region R is rotated 2π radians about the y-axis.</p> $\frac{3\pi}{2}$	F	<p>The region R is formed between the curves $y^2 = x$ and $y = x^2$ and the x-axis. Find the exact volume of the solid formed when the region R is rotated 2π radians about the x-axis.</p> $\frac{3}{10}\pi$

Calculate exact answers for each volume. To get the three-digit code, add together your answers then round your total to the nearest integer. **147**