Rotations Using Matrices		
(a)	(b)	(c)
By considering the unit square, determine the matrix which describes a rotation 90° clockwise about the origin.	Describe fully the single transformation represented by the $\text { matrix }\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	By considering the unit square, determine the matrix which describes a rotation 180° about the origin.
(d)	(e)	(f)
The point $(1,-6)$ is mapped onto the point (a, b) when rotated 90° anticlockwise about the origin. Using matrix algebra, find the values of a and b.	The point (c, d) is mapped onto the point $(2,4)$ when rotated 270° anti-clockwise about the origin. Using matrix algebra, find the values of c and d.	A triangle with vertices at $(1,1),(5,2)$ and $(4,-1)$ is rotated 180° about the origin. Use matrix algebra to find the coordinates of the vertices of the rotated triangle.
(g)	(h)	(i)
Use matrix algebra to show that a rotation of 90° clockwise about the origin, followed by a rotation of 180° is equivalent to a rotation of 90° anti-clockwise about the origin.	The point $(a, 6)$ is mapped onto the point $(b,-4)$ following a rotation of 90° anticlockwise about the origin. Use matrix algebra to find the values of a and b.	The point $(x, 2 y+6)$ is mapped onto the point ($2 x, y-7$) following a rotation of 90° clockwise about $(0,0)$. Use matrix algebra to find the values of x and y.

