Algebraic Proof with Multiples

(a) Show that $4(n+3)-n$ is a multiple of 3 for all integer values of n
(b) Show that $(n+2)^{2}+3 n^{2}$ is a multiple of 4 for all integer values of n
(c) Show that $(3 n-1)^{2}-(2 n+1)^{2}$ is a multiple of 5 for all integer values of n
(d) Show that
$(2 n+1)(4 n-3)-(n+2)^{2}-n$ is a multiple of 7 for all integer values of n
(a) Show that the sum of three consecutive integers is always a multiple of 3
(b) Show that the sum of three consecutive even numbers is always a multiple of 6
(c) Show that the product of two consecutive even numbers is always a multiple of 4
(a) Prove algebraically that the sum of three consecutive square numbers is never a multiple of 3
(b) Prove algebraically that the sum of the squares of any two odd numbers is never a multiple of 4
(c) Prove algebraically that the product of two consecutive odd numbers is never a multiple of 4
(a) Prove algebraically that the product of three consecutive even numbers is always a multiple of 8
(b) Prove algebraically that the sum of the cubes of two consecutive even numbers is always a multiple of 8
(c) Prove algebraically that the product of the squares of two odd numbers is always one more than a multiple of 4

Algebraic Proof with Multiples

(a) Show that $4(n+3)-n$ is a multiple of 3 for all integer values of n
(b) Show that $(n+2)^{2}+3 n^{2}$ is a multiple of 4 for all integer values of n
(c) Show that $(3 n-1)^{2}-(2 n+1)^{2}$ is a multiple of 5 for all integer values of n
(d) Show that
$(2 n+1)(4 n-3)-(n+2)^{2}-n$ is a multiple of 7 for all integer values of n
(a) Show that the sum of three consecutive integers is always a multiple of 3
(b) Show that the sum of three consecutive even numbers is always a multiple of 6
(c) Show that the product of two consecutive even numbers is always a multiple of 4
(a) Prove algebraically that the sum of three consecutive square numbers is never a multiple of 3
(b) Prove algebraically that the sum of the squares of any two odd numbers is never a multiple of 4
(c) Prove algebraically that the product of two consecutive odd numbers is never a multiple of 4
(a) Prove algebraically that the product of three consecutive even numbers is always a multiple of 8
(b) Prove algebraically that the sum of the cubes of two consecutive even numbers is always a multiple of 8
(c) Prove algebraically that the product of the squares of two odd numbers is always one more than a multiple of 4

