Matrix Multiplication

Is it possible to multiply the matrices shown?

)

(a)
$$\binom{2}{0}_{4} \times \binom{5 - 1}{4 0}$$

(b) $(-7 \ 4) \times \binom{2}{6}$
(c) $\binom{1 \ 0}{4 - 3} \times \binom{3 \ 2 \ 5}{6 \ 0 - 1}$

Work out:

(a) $\binom{4}{2} \times (-2 \ 5)$ (b) $\binom{0}{2} \frac{3}{5} \times \binom{-1}{0} \frac{3}{6}$ (c) $(4 \ 7 \ -2) \times \binom{0}{1}$ (d) $\binom{1}{3} \frac{-2}{7} \times \binom{-1}{0} \frac{4}{-2}$ (e) $\binom{0}{-5} \frac{2}{3} \times \binom{1}{-3} \frac{6}{0}$ (f) $\binom{-2}{8} \frac{1}{0} \times \binom{-3}{1} \frac{5}{2}$

(a) Given that $\begin{pmatrix} -2 & a \\ -4 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 22 \\ 9 \end{pmatrix}$ work out the value of *a*.

(b) Matrix $\mathbf{P} = \begin{pmatrix} 2 & 3 \\ a & b \end{pmatrix}$ Matrix $\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ You are given that $\mathbf{PQ} = \mathbf{QP}$. Work out the values of a and b.

Matrix Multiplication

Is it possible to multiply the matrices shown?

(a)
$$\binom{2}{0}_{4} \times \binom{5 - 1}{4 0}$$

(b) $(-7 4) \times \binom{2}{6}$

(c)
$$\begin{pmatrix} 1 & 0 \\ 4 & -3 \end{pmatrix} \times \begin{pmatrix} 3 & 2 & 5 \\ 6 & 0 & -1 \end{pmatrix}$$

Work out:
(a)
$$\binom{4}{2} \times (-2 \ 5)$$

(b) $\binom{0}{2} \frac{3}{5} \times \binom{-1}{0} \frac{3}{6}$
(c) $(4 \ 7 \ -2) \times \binom{0}{1}$
(d) $\binom{1}{3} \frac{-2}{7} \times \binom{-1}{0} \frac{4}{-2}$
(e) $\binom{0}{-5} \frac{2}{3} \times \binom{1}{-3} \frac{6}{0}$
(f) $\binom{-2}{8} \frac{1}{0} \times \binom{-3}{1} \frac{5}{2}$

(a) Given that $\begin{pmatrix} -2 & a \\ -4 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 22 \\ 9 \end{pmatrix}$ work out the value of a. (b) Matrix $\mathbf{P} = \begin{pmatrix} 2 & 3 \\ a & b \end{pmatrix}$ Matrix $\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

You are given that $\mathbf{PQ} = \mathbf{QP}$. Work out the values of *a* and *b*.