Differentiation Revision

(a)	(b)		(c)		(d)
$\begin{gathered} y=4 x^{2}+5 x-7 \\ \text { Find } \frac{d y}{d x} \\ \frac{d y}{d x}=8 x+5 \end{gathered}$	$\begin{gathered} y=(2 x-3)(x+5) \\ \text { Find } \frac{d y}{d x} \\ \frac{d y}{d x}=4 x+7 \end{gathered}$		Find $\frac{d y}{d x}$ when $y=\frac{x^{5}-3 x^{2}}{x^{2}}$$\frac{d y}{d x}=3 x^{2}$		Find $\frac{d y}{d x}$ when $y=15 x^{2}+\frac{2}{x}$ $\frac{d y}{d x}=30 x-\frac{2}{x^{2}}$
(e)	(f)		(g)		(h)
$y=x^{2}(3-x)$ Find the value of $\frac{d y}{d x}$ when $\begin{aligned} x & =-4 \\ \frac{d y}{d x} & =-72 \end{aligned}$	The gradient of the curve $y=4 x^{2}-k x$ at the point where $x=-2$ is -6 . Find the value of k.$k=-10$		Find the coordinates of the minimum point of the curve$\begin{gathered} y=x^{2}-5 x+1 \\ \left(\frac{5}{2},-\frac{21}{4}\right) \end{gathered}$		The distance of a particle is given by $s=t^{3}-5 t^{2}+3 t$. Find the velocity and acceleration at time $t=4$ seconds $\begin{aligned} & v=31 \mathrm{~ms}^{-1} \\ & a=14 \mathrm{~ms}^{-2} \end{aligned}$
(i)		(j)		(k)	
A curve with equation $y=\frac{1}{3} x^{3}-3 x^{2}+5 x$ has two turning points. Work out the coordinates of the turning points.$\begin{aligned} & \frac{d y}{d x}=x^{2}-6 x+5 \\ & \left(5,-\frac{25}{3}\right) \text { and }\left(1, \frac{7}{3}\right) \end{aligned}$		Find the range of values for which the gradient of the curve $y=x^{3}-5 x^{2}+3 x-2$ is negative$\begin{gathered} \frac{d y}{d x}=3 x^{2}-10 x+3 \\ \frac{1}{3}<x<3 \end{gathered}$		A rectangle has a perimeter of 120 cm . Given that the length of the rectangle is x, show that the area $A=60 x-x^{2}$ Hence find the length x that gives the maximum area of the rectangle. $\begin{aligned} & \text { Let width }=y \text { then } y=\frac{120-2 x}{2}=60-x \\ & \qquad A=x(60-x)=60 x-x^{2} \end{aligned}$ Maximum area when $x=30$	

