Differentiation Revision					
(a)	(b)		(c)		(d)
$y = 4x^{2} + 5x - 7$ Find $\frac{dy}{dx}$ $\frac{dy}{dx} = 8x + 5$	y = (2x - 3)(x + 5) Find $\frac{dy}{dx}$ $\frac{dy}{dx} = 4x + 7$		Find $\frac{dy}{dx}$ when $y = \frac{x^5 - 3x^2}{x^2}$ $\frac{dy}{dx} = 3x^2$		Find $\frac{dy}{dx}$ when $y = 15x^2 + \frac{2}{x}$ $\frac{dy}{dx} = 30x - \frac{2}{x^2}$
(e)	(f)		(g)		(h)
$y = x^{2}(3 - x)$ Find the value of $\frac{dy}{dx}$ when $x = -4$ $\frac{dy}{dx} = -72$	The gra $y = 4x^2$ where $x =$	dient of the curve $k^2 - kx$ at the point $k^2 - 2$ is -6 . Find the value of k . k = -10	Find the coord minimum point $y = x^2 - \frac{5}{2}, -$	inates of the t of the curve $-5x + 1$	The distance of a particle is given by $s = t^3 - 5t^2 + 3t$. Find the velocity and acceleration at time t = 4 seconds $v = 31 ms^{-1}$ $a = 14 ms^{-2}$
(i)	1	(j)		(k)	
A curve with equation $y = \frac{1}{3}x^3 - 3x^2 + 5x$ has two turning points. Work out the coordinates of the turning points. $\frac{dy}{dx} = x^2 - 6x + 5$ $\left(5, -\frac{25}{3}\right) \text{ and } \left(1, \frac{7}{3}\right)$		Find the range of values for which the gradient of the curve $y = x^3 - 5x^2 + 3x - 2$ is negative $\frac{dy}{dx} = 3x^2 - 10x + 3$ $\frac{1}{3} < x < 3$		A rectangle has a perimeter of 120 cm. Given that the length of the rectangle is x , show that the area $A = 60x - x^2$ Hence find the length x that gives the maximum area of the rectangle. Let width = y then $y = \frac{120-2x}{2} = 60 - x$ $A = x(60 - x) = 60x - x^2$ Maximum area when $x = 30$	