Rotations Using Matrices		
(a)	(b)	(c)
By considering the unit square, determine the matrix which describes a rotation 90° clockwise about the origin. $\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	Describe fully the single transformation represented by the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ Rotation 90° anti - clockwise about origin	By considering the unit square, determine the matrix which describes a rotation 180° about the origin. $\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$
(d)	(e)	(f)
The point $(1,-6)$ is mapped onto the point (a, b) when rotated 90° anticlockwise about the origin. Using matrix algebra, find the values of a and b. $\begin{gathered} \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\binom{1}{-6}=\binom{a}{b} \\ a=6, b=1 \end{gathered}$	The point (c, d) is mapped onto the point $(2,4)$ when rotated 270° anti-clockwise about the origin. Using matrix algebra, find the values of c and d. $\begin{gathered} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\binom{c}{d}=\binom{2}{4} \\ c=-4, d=2 \end{gathered}$	A triangle with vertices at $(1,1),(5,2)$ and $(4,-1)$ is rotated 180° about the origin. Use matrix algebra to find the coordinates of the vertices of the rotated triangle. Vertices $(-1,-1)$, $(-5,-2)$ and $(4,-1)$
(g)	(h)	(i)
Use matrix algebra to show that a rotation of 90° clockwise about the origin, followed by a rotation of 180° is equivalent to a rotation of 90° anti-clockwise about the origin. $\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	The point $(a, 6)$ is mapped onto the point $(b,-4)$ following a rotation of 90° anticlockwise about the origin. Use matrix algebra to find the values of a and b. $\begin{gathered} \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\binom{a}{6}=\binom{b}{-4} \\ a=-4, b=-6 \end{gathered}$	The point $(x, 2 y+6)$ is mapped onto the point $(2 x, y-7)$ following a rotation of 90° clockwise about $(0,0)$. Use matrix algebra to find the values of x and y. $\begin{gathered} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\binom{x}{2 y+6}=\binom{2 x}{y-7} \\ x=5, y=2 \end{gathered}$

