Harder Transformations Using Matrices

(a)	(b)	(c)
Find the single matrix that represents an enlargement about the origin with scale factor 3 , followed by a rotation of 90° clockwise about the origin.	Find the single matrix that represents a reflection in the y-axis, followed by a rotation of 180° about the origin.	$P=\left(\begin{array}{cc} 3 & 1 \\ 0 & -1 \end{array}\right) \quad Q=\left(\begin{array}{cc} 0 & 2 \\ 1 & -1 \end{array}\right)$ Matrices P and Q represent different transformations. Find the single matrix that represents transformation P followed by transformation Q .
(d)	(e)	(f)
The point $\mathrm{P}(4,-2)$ is mapped to the point Q following a reflection in the line $y=x$, then an enlargement with scale factor 2 about the origin. Use matrix algebra to find the coordinates of point Q .	The point (a, b) is mapped to the point $(-5,1)$ following a rotation of 180° about the origin, then a reflection in the x-axis. Using matrix algebra, find the coordinates (a, b).	The matrix $\left(\begin{array}{cc}0 & b \\ -2 & 4\end{array}\right)$ maps the point ($a,-3$) onto the point $(-9,5)$. Use matrix algebra to find the values of a and b.
(g)	(h)	(i)
The transformation matrix $\left(\begin{array}{cc}a & 2 b \\ -a & 3\end{array}\right)$ maps the point $(2,-1)$ to the point $(6,7)$. Find the values of a and b.	The transformation matrix $\left(\begin{array}{cc}b & 2 a \\ a & -b\end{array}\right)$ maps the point $(6,3)$ to the point $(24, b)$. Find the values of a and b.	Point $(c, 4)$ is mapped to the point $(-2, d)$ by the transformation matrix $\left(\begin{array}{ll}c & -3 \\ 2 & -1\end{array}\right)$. Use matrix algebra to find the two possible values of c and d.

