Multi-Stage Constant Acceleration Problems

(a) A particle travels in a straight line from A to B with a constant acceleration of 2 ms^{-2} . After 3 seconds the particle reaches B, where it has a velocity of 18 ms^{-1} . Its acceleration then changes to 1.5 ms^{-2} and it continues to travel in a straight line from B to C, a distance of 39 m. Find the initial velocity of the particle, the total distance travelled and the total time taken.

A to B	B to C	Working and Answers
<i>s</i> = 45	<i>s</i> = 39	
<i>u</i> = 12	<i>u</i> = 18	Initial velocity = 12 ms^{-1}
v = 18	<i>v</i> = 21	Total distance travelled = 84 m
<i>a</i> = 2	<i>a</i> = 1.5	Total time taken = 5 s
t = 3	t = 2	

(b) A particle sets off from A with an initial velocity of 10 ms^{-1} . It travels in a straight line for 2.5 seconds with a constant acceleration of $a \text{ ms}^{-2}$ until it reaches B. The acceleration of the particle then changes to 4 ms^{-2} and the particle travels a further 240 m over 6 seconds, until it reaches point C. Find the acceleration from A to B, and the total distance travelled by the particle.

A to B	B to C	Working and Answers
<i>s</i> = 47.5	<i>s</i> = 240	Acceleration from A to $B = 7.2 \text{ ms}^{-2}$ Total distance travelled = 287.5 m
u = 10	<i>u</i> = 28	
v = 28	v =	
a = 7.2	<i>a</i> = 4	
t = 2.5	t = 6	

(c) A particle travels in a straight from A to C through B, where AB=BC. The particle starts from rest at A and moves with a constant acceleration of 2.5 ms^{-2} until it reaches B. The particle then continues in the same direction, decelerating at a constant rate until it reaches C. The time taken from B to C is 5 seconds and the velocity at C is 12 ms^{-1} . Find the velocity at B, the total distance travelled and the deceleration from B to C.

A to B	B to C	Working and Answers
<i>s</i> = 80	<i>s</i> = 80	Velocity at $B = 20 \text{ ms}^{-1}$ Total distance travelled = 160 m Deceleration from B to C = 1.6 ms ⁻²
u = 0	u = 20	
v = 20	v = 12	
a = 2.5	a = -1.6	
t = t	t = 5	