Number and Algebra Proof Revision					
(a)	(b)		(c)		(d)
Show that $8\frac{1}{2} - 3\frac{2}{3} = 4\frac{5}{6}$	Show that $\sqrt{80}$ can be written in the form $k\sqrt{5}$ where k is an integer to be found $\sqrt{80} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}$ k = 5		Show that $0. \dot{7}\dot{5} = \frac{25}{33}$ $x = 0. \dot{7}\dot{5}$ $100x = 75. \dot{7}\dot{5}$ 99x = 75 $x = \frac{75}{99} = \frac{25}{33}$		Show that $3\frac{5}{8} \div 1\frac{5}{6} = 1\frac{43}{44}$
$\frac{17}{2} - \frac{11}{3} = \frac{51}{6} - \frac{22}{6}$ $= \frac{29}{6} = 4\frac{5}{6}$					$\frac{29}{8} \div \frac{11}{6} = \frac{29}{8} \times \frac{6}{11} = \frac{174}{88}$ $= \frac{87}{44} = 1\frac{43}{44}$
(e)	(f)		(g)		(h)
Show that $0.3\dot{1} = \frac{14}{45}$ $x = 0.3\dot{1}$ $10x = 3.\dot{1}$ $100x = 31.\dot{1}$ 90x = 28 $x = \frac{28}{90} = \frac{14}{45}$	Show that $0.4\dot{2}\dot{7} = \frac{47}{110}$ $x = 0.4\dot{2}\dot{7}$ $10x = 4.\dot{2}\dot{7}$ $1000x = 427.\dot{2}\dot{7}$ 990x = 423 $x = \frac{423}{990} = \frac{47}{110}$		Show that $(7 - 5\sqrt{3})^2 = a + b\sqrt{3}$ where a and b are integers to be found $(7 - 5\sqrt{3})(7 - 5\sqrt{3})$ $= 49 - 35\sqrt{3} - 35\sqrt{3} + 25\sqrt{9}$ $= 124 - 70\sqrt{3}$ $a = 124, b = -70$		Show that the product of an even number and an odd number is always even. Let odd number = $2n + 1$ Let even number = $2m$ 2m(2n + 1) = 4mn + 2m = 2(2mn + m) which is a multiple of 2 and hence even
(i)		(j)		(k)	
Show that the sum of three consecutive odd numbers is always a multiple of 3 Let consecutive odd numbers be 2n + 1, 2n + 3 and $2n + 52n + 1 + 2n + 3 + 2n + 5 = 6n + 9= 3(2n + 3)which is a multiple of 3$		Show that $\frac{3\sqrt{12}}{2-\sqrt{3}}$ can be written in the form $c + d\sqrt{3}$, where c and d are integers to be found. $\frac{3\sqrt{12}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{6\sqrt{12}+3\sqrt{36}}{4-3}$ $= \frac{6\times 2\sqrt{3}+3\times 6}{1} = 12\sqrt{3}+18$ $c = 18, d = 12$		Show that (3n + 4)(n - 3) + n(n - 3) is a multiple of 4 for all integer values of n $(3n + 4)(n - 3) + n(n - 3)$ $3n^{2} + 4n - 9n - 12 + n^{2} - 3n$ $= 4n^{2} - 8n - 12$ $= 4(n^{2} - 2n - 3)$ which is a multiple of 4	