Harder Speed Calculations		
(a)	(b)	(c)
A tractor travels at 12 mph for 10 minutes and then at 20 mph for 15 minutes. Calculate the average speed of the tractor across the whole journey.	A train travels 320 km from Manchester to London in 2 hours 5 minutes. Initially, the train travels at $180 \mathrm{~km} / \mathrm{h}$ for 50 minutes. It then travels at a constant speed s for the rest of the journey. Find s in km / h.	Riya walks from home to school in 24 minutes at a speed of $4 \mathrm{~km} / \mathrm{h}$. She then jogs back home and is 9 minutes quicker than when she walked. What is Riya's average speed jogging home?
(d)	(e)	(f)
Liverpool is 120 km from Leeds. A car sets off from Liverpool travelling at $80 \mathrm{~km} / \mathrm{h}$. A lorry sets off from Leeds travelling at 70 km / h. How far from Liverpool are the two vehicles when they pass each other?	Ayesha goes for the same run every morning. She normally runs at $7.5 \mathrm{~km} / \mathrm{h}$ but finds that when she increases her speed to $8 \mathrm{~km} / \mathrm{h}$, she completes the run 2 minutes quicker. How far does Ayesha run?	Train A leaves the station at 9.24 am travelling at $126 \mathrm{~km} / \mathrm{h}$. Train B leaves the same station at 9.32 am , travelling along the same line at $140 \mathrm{~km} / \mathrm{h}$. At what time will train B catch up to train A ?
(g)	(h)	(i)
Theo travels from home to work at a constant speed of $50 \mathrm{~km} / \mathrm{h}$. At the end of the day, he travels from work to home at a constant speed of $30 \mathrm{~km} / \mathrm{h}$. Calculate his average speed across both journeys.	A taxi travels at $x \mathrm{~km} / \mathrm{h}$ for 15 minutes, then at $3 x \mathrm{~km} / \mathrm{h}$ for 10 minutes and finally at $2 x \mathrm{~km} / \mathrm{h}$ for 5 minutes. Find the average speed of the taxi across the whole journey in terms of x.	Yusuf runs a 400 m race. He sets off at x m / s and runs at this speed for 50 seconds before increasing his speed by 25% to run for the remaining 30 seconds. Find the value of x.

