Theoretical Probability with Counters					
A bag contains 7 red	(a)	(b)		(c)	(d)
counters and 3 white counters. A counter is chosen at random.	What is the probability that a white counter is chosen? $\frac{3}{10}$	What is the that a blac cho	e probability k counter is sen? 0	What is the probability that the counter chosen is not white? 7 10	How many white counters would need to be added to the bag to make the probability of choosing a white counter equal to $\frac{1}{2}$? 4
A bag contains 2 white counters, 4 orange counters and 4 black counters. A counter is chosen at random.	(e)	(f)		(g)	(h)
	What is the probability that a black counter is chosen? $\frac{4}{10} = \frac{2}{5}$	What is the that a whit counter $\frac{6}{10}$	e probability te or orange is chosen? $=\frac{3}{5}$	What is the probability that the counter chosen is not white? $\frac{8}{10} = \frac{4}{5}$	How many black counters would need to be added to the bag to make the probability of choosing a black counter equal to $\frac{1}{2}$? 2
A bag contains 1 black counter, 3 green counters and 4 white counters. A counter is chosen at random.	(i)	(j)		(k)	(I)
	What is the probability that a white counter is chosen? $\frac{4}{8} = \frac{1}{2}$	What is the probability that a green, white or black counter is chosen? 1		What is the probability that the counter chosen is not black? 7 8	How many white counters would need to be added to the bag to make the probability of choosing a white counter equal to $\frac{2}{3}$?
					т Т
counters and 5 red	(m)		(n)		(0)
counters. The rest of the counters are white. Bag B contains 3 blue counters, 2 white counters and 5 red	The probability of choos counter from bag A is 0 is the total number of c bag A? 20	A is 0.35. What er of counters in A? A is 0.35. What er of counters in A? A is 0.35. What at random the greater a 0 0.35 <i>for</i>		a counter at random . Ben takes a counter from bag B. Who has probability of choosing blue counter? Ali	How many red counters does Ben need to add to bag A to make the probability of choosing a red counter from bag A the same as from bag B?