Vectors and Coordinates

(a)
$A B C D$ is a parallelogram.
$\overrightarrow{A B}=\binom{-2}{3}$ and $\overrightarrow{A D}=\binom{3}{5}$
Given that the coordinates of A are $(3,1)$, find the coordinates of points B, C and D.

(b)
$A B C D$ is a parallelogram.
$\overrightarrow{A D}=\binom{6}{1}$ and $\overrightarrow{D C}=\binom{2}{4}$
Given that the coordinates of A are $(0,1)$, find the coordinates of points B, C and D.

(c)
$A B C D$ is a parallelogram. $\overrightarrow{B C}=\binom{3}{2}$
The coordinates of A are $(2,7)$ and of B are $(8,3)$. Find the coordinates of C and D, and the vector $\overrightarrow{D C}$.

(d)
$A B C D$ is a rhombus. $\overrightarrow{C B}=\binom{-3}{-4}$
The coordinates of A are $(-1,4)$ and of B are $(3,1)$. Find the coordinates of C and D, and the vector $\overrightarrow{D C}$.

$$
\begin{gathered}
C(11,5) \\
D(5,9) \\
\overrightarrow{D C}=\binom{6}{-4}
\end{gathered}
$$

(e)
$A B C D$ is a trapezium. $\overrightarrow{A B}=2 \overrightarrow{D C}$.
$\overrightarrow{D C}=\binom{3}{1}$ and $\overrightarrow{B C}=\binom{-3}{4}$
The coordinates of D are $(2,8)$. Find the coordinates of A, and the vector $\overrightarrow{A D}$.

(f)
$A B C D E F$ is a regular hexagon.
$\overrightarrow{A B}=\binom{4}{0}$ and $\overrightarrow{F E}=\binom{2}{2 \sqrt{3}}$
$\overrightarrow{F C}=2 \overrightarrow{A B}$. The coordinates of A are $(5,2)$. Find the coordinates of B, C and D.

$$
\begin{gathered}
B(9,2) \\
C(11,2+2 \sqrt{3}) \\
D(9,2+4 \sqrt{3})
\end{gathered}
$$

