Using the Nth Term of Quadratic Sequences

$u_{n}=n^{2}+3 n-5$	$u_{n}=3 n^{2}-n+1$	$u_{n}=n^{2}-2 n$	$u_{n}=n^{2}+a n-b$
(a)	(a)	(a)	(a)
Find the value of u_{4} 23	Find the value of u_{6} 103	Find the $9^{\text {th }}$ term of the sequence. 63	Find the value of u_{5} in terms of a and b. $25+5 a-b$
(b)	(b)	(b)	(b)
Find the difference between the $6^{\text {th }}$ term and the $7^{\text {th }}$ term. 16	Find the sum of the $9^{\text {th }}$ term and the $10^{\text {th }}$ term. 526	Find an expression for the $(n+1)^{\text {th }}$ term. $n^{2}-1$	Find the value of u_{7} in terms of a and b. $49+7 a-b$
(c)	(c)	(c)	(c)
A term of the sequence is 65 Find the value of n. $\begin{gathered} (n+10)(n-7)=0 \\ n=7 \end{gathered}$	A term of the sequence is 103 Find the value of n. $\begin{gathered} (3 n+17)(n-6)=0 \\ n=6 \end{gathered}$	Find an expression for the difference between the $n^{\text {th }}$ and the $(n+1)^{\text {th }}$ term. $2 n-1$	Given that $u_{5}=25$ and $u_{7}=70$, find the values of a and b. $\begin{aligned} & a=4 \\ & b=7 \end{aligned}$

