Vector Proof - Equating Coefficients

(a)

$O A B C$ is a quadrilateral, where $\overrightarrow{O C}=3 \boldsymbol{a}$, $\overrightarrow{O A}=\boldsymbol{a}+2 \boldsymbol{b}$ and $\overrightarrow{A B}=2 \boldsymbol{a}-\frac{1}{2} \boldsymbol{b}$. The point D is on $O B$ and $A C$ such that $O D: O B=\lambda: 1$ and $A D: A C=\mu: 1$. By finding two ways to express the vector $\overrightarrow{O D}$, find the values of λ and μ.

$$
\begin{gathered}
\overrightarrow{O D}=\lambda \overrightarrow{O B}=\lambda\left(3 \boldsymbol{a}+\frac{3}{2} \boldsymbol{b}\right) \\
\overrightarrow{O D}=\overrightarrow{O A}+\mu \overrightarrow{A C} \\
\overrightarrow{O D}=\boldsymbol{a}+2 \boldsymbol{b}+\mu(2 \boldsymbol{a}-2 \boldsymbol{b})
\end{gathered}
$$

Coefficients of \boldsymbol{a}

$$
3 \lambda=1+2 \mu
$$

Coefficients of \boldsymbol{b} :

$$
\begin{aligned}
& \frac{3}{2} \lambda=2-2 \mu \\
& \lambda=\frac{2}{3}, \mu=\frac{1}{2}
\end{aligned}
$$

(b)

$O A B C$ is a trapezium, where $\overrightarrow{O C}=10 \boldsymbol{a}$, $\overrightarrow{O A}=\boldsymbol{a}-4 \boldsymbol{b}$ and $\overrightarrow{A B}=5 \boldsymbol{a} . M$ is the midpoint of the line $B C$. The point X is on $O B$ and $A M$ such that
$O X: O B=\lambda: 1$ and $A X: A M=\mu: 1$. Find the values of λ and μ and the vector $\overrightarrow{O X}$ in terms of \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{gathered}
\overrightarrow{O X}=\lambda \overrightarrow{O B}=\lambda(6 \boldsymbol{a}-4 \boldsymbol{b}) \\
\overrightarrow{O X}=\overrightarrow{O A}+\mu \overrightarrow{A M} \\
\overrightarrow{O X}=\boldsymbol{a}-4 \boldsymbol{b}+\mu(7 \boldsymbol{a}+2 \boldsymbol{b})
\end{gathered}
$$

Coefficients of \boldsymbol{a} :

$$
6 \lambda=1+7 \mu
$$

Coefficients of \boldsymbol{b} :

$$
-4 \lambda=-4+2 \mu
$$

$$
\lambda=\frac{3}{4}, \mu=\frac{1}{2}, \overrightarrow{O X}=\frac{9}{2} \boldsymbol{a}-3 \boldsymbol{b}
$$

(c)

In the triangle $O A B, \overrightarrow{O B}=5 \boldsymbol{b}$ and $\overrightarrow{O M}=$ $2 \boldsymbol{a}+2 \boldsymbol{b}$, where M is the midpoint of $O A$. $O C$ is the line $O B$ produced and $\overrightarrow{O B}=\overrightarrow{B C}$. The point X is on the line $A B$ such that $A X: A B=\lambda: 1$. Given that $M X C$ is a straight line, find the value of λ and the vector $\overrightarrow{M X}$ in terms of \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{gathered}
\overrightarrow{M X}=\mu \overrightarrow{M C}=\mu(-2 \boldsymbol{a}+8 \boldsymbol{b}) \\
\overrightarrow{M X}=\overrightarrow{M A}+\lambda \overrightarrow{A B} \\
\overrightarrow{M X}=2 \boldsymbol{a}+2 \boldsymbol{b}+\lambda(-4 \boldsymbol{a}+\boldsymbol{b})
\end{gathered}
$$

Coefficients of \boldsymbol{a} :

$$
-2 \mu=2-4 \lambda
$$

Coefficients of \boldsymbol{b} :

$$
8 \mu=2+\lambda
$$

$$
\lambda=\frac{2}{3}, \mu=\frac{1}{3}, \overrightarrow{M X}=-\frac{2}{3} \boldsymbol{a}+\frac{8}{3} \boldsymbol{b}
$$

