Vector Proof – Equating Coefficients

(a)

 \overrightarrow{OABC} is a quadrilateral, where $\overrightarrow{OC}=3\pmb{a}$, $\overrightarrow{OA}=\pmb{a}+2\pmb{b}$ and $\overrightarrow{AB}=2\pmb{a}-\frac{1}{2}\pmb{b}$. The point D is on OB and AC such that $OD:OB=\lambda:1$ and $AD:AC=\mu:1$. By finding two ways to express the vector \overrightarrow{OD} , find the values of λ and μ .

$$\overrightarrow{OD} = \lambda \overrightarrow{OB} = \lambda \left(3\boldsymbol{a} + \frac{3}{2}\boldsymbol{b} \right)$$
$$\overrightarrow{OD} = \overrightarrow{OA} + \mu \overrightarrow{AC}$$
$$\overrightarrow{OD} = \boldsymbol{a} + 2\boldsymbol{b} + \mu (2\boldsymbol{a} - 2\boldsymbol{b})$$

Coefficients of \boldsymbol{a} : $3\lambda = 1 + 2\mu$

Coefficients of **b**:

$$\frac{3}{2}\lambda = 2 - 2\mu$$

$$\lambda = \frac{2}{3}, \mu = \frac{1}{2}$$

(b)

 \overrightarrow{OABC} is a trapezium, where $\overrightarrow{OC}=10a$, $\overrightarrow{OA}=a-4b$ and $\overrightarrow{AB}=5a$. M is the midpoint of the line BC. The point X is on OB and AM such that $OX:OB=\lambda:1$ and $AX:AM=\mu:1$. Find the values of λ and μ and the vector \overrightarrow{OX} in terms of a and a.

$$\overrightarrow{OX} = \lambda \overrightarrow{OB} = \lambda (6\mathbf{a} - 4\mathbf{b})$$

$$\overrightarrow{OX} = \overrightarrow{OA} + \mu \overrightarrow{AM}$$

$$\overrightarrow{OX} = \mathbf{a} - 4\mathbf{b} + \mu (7\mathbf{a} + 2\mathbf{b})$$

Coefficients of a: $6\lambda = 1 + 7\mu$

Coefficients of \boldsymbol{b} : $-4\lambda = -4 + 2\mu$

$$\lambda = \frac{3}{4}, \mu = \frac{1}{2}, \overrightarrow{OX} = \frac{9}{2}\boldsymbol{a} - 3\boldsymbol{b}$$

(c)

In the triangle OAB, $\overrightarrow{OB} = 5\mathbf{b}$ and $\overrightarrow{OM} = 2\mathbf{a} + 2\mathbf{b}$, where M is the midpoint of OA. OC is the line OB produced and $\overrightarrow{OB} = \overrightarrow{BC}$. The point X is on the line AB such that $AX : AB = \lambda : 1$. Given that MXC is a straight line, find the value of λ and the vector \overrightarrow{MX} in terms of \mathbf{a} and \mathbf{b} .

$$\overrightarrow{MX} = \mu \overrightarrow{MC} = \mu(-2\boldsymbol{a} + 8\boldsymbol{b})$$

$$\overrightarrow{MX} = \overrightarrow{MA} + \lambda \overrightarrow{AB}$$

$$\overrightarrow{MX} = 2\boldsymbol{a} + 2\boldsymbol{b} + \lambda(-4\boldsymbol{a} + \boldsymbol{b})$$

Coefficients of a: $-2\mu = 2 - 4\lambda$

Coefficients of \boldsymbol{b} : $8\mu = 2 + \lambda$

$$\lambda = \frac{2}{3}, \mu = \frac{1}{3}, \overrightarrow{MX} = -\frac{2}{3}a + \frac{8}{3}b$$