Reflections Using Matrices			
(a)	(b)		(c)
By considering the unit square, determine the matrix which describes a reflection in the x axis.	Describe fully the single transformation represented by the $\text { matrix }\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$		By considering the unit square, determine the matrix which describes a reflection in the line $y=-x$
(d)	(e)		(f)
The point $(-4,2)$ is mapped onto the point (a, b) when reflected in the x-axis. Using matrix algebra, find the coordinates (a, b).	The point (c, d) is ma $(7,-5)$ when reflected Using matrix algebra, (c,d)	ed onto the point the line $y=-x$. d the coordinates	A triangle with vertices at $(0,5),(4,3)$ and $(1,-1)$ is reflected in the line $y=x$. Use matrix algebra to find the coordinates of the vertices of the reflected triangle.
(g)	(h)		(i)
A triangle with vertices at $(0,1),(1,0)$ and $(3,2)$ is reflected so its vertices map to $(0,-1),(-1,0)$ and $(-2,-3)$. Find the transformation matrix and the line of reflection.	The point $(-2, a)$ is point $(b, 3)$ following line $x=0$. Use matrix values of a	apped onto the reflection in the gebra to find the and b.	The point $(x, 3 x-7)$ is mapped onto the point $(y+3, y)$ following a reflection in the line y-axis. Use matrix algebra to find the values of x and y.

