Investigating Prime Numbers

The Goldbach Conjecture states that all **even numbers** greater than two can be written as the **sum** of two **prime numbers**.

Show that this is true for all even numbers from 4 to 50.

4	2 + 2	28	17 + 11
6	3 + 3	30	23 + 7
8	3 + 5	32	19 + 13
10	5 + 5	34	17 + 17
12	7 + 5	36	19 + 17
14	11 + 3	38	19 + 19
16	13 + 3	40	23 + 17
18	13 + 5	42	23 + 19
20	13 + 7	44	13 + 31
22	11 + 11	46	23 + 23
24	13 + 11	48	31 + 17
26	13 + 13	50	31 + 19
I			

Goldbach also suggested that all **integers** (whole numbers) **greater than six** can be written as the sum of **three prime** numbers.

Show that this is true for all numbers from 6 to 25.

6	2 + 2 + 2	16	2 + 2 + 11
6	2 + 2 + 2	16	2+3+11
7	2 + 2 + 3	17	3 + 3 + 11
8	2 + 3 + 3	18	2+3+13
9	3 + 3 + 3	19	3 + 5 + 11
10	2 + 3 + 5	20	2 + 7 + 11
11	3 + 3 + 5	21	3 + 5 + 13
12	2 + 3 + 7	22	2 + 7 + 13
13	3 + 3 + 7	23	5 + 7 + 11
14	2 + 5 + 7	24	2 + 5 + 17
15	3 + 5 + 7	25	7 + 7 + 11