Volumes of Revolution Around the X-Axis

Question	Definite Integral	Integrate	Evaluate Upper and Lower Limits		Volume of Revolution
Find the volume of the solid formed when the curve $y=x^2$ is rotated 360° around the x -axis between $x=1$ and $x=3$	$\pi \int_{1}^{3} x^{4} dx$	$\pi \left[\frac{x^5}{5} \right]_1^3$			
Find the volume of the solid formed when the curve $y=2\sqrt{x}$ is rotated 2π radians around the x -axis between $x=2$ and $x=5$	$\pi \int_2^5 4x \ dx$				
Find the volume of the solid formed when the curve $y^2=1+\frac{1}{\sqrt{x}}$ is rotated 360° around the x -axis between $x=4$ and $x=9$					
Find the volume of the solid formed when the curve $y=\frac{1}{2}\sqrt[3]{x}$ is rotated 2π radians around the x -axis between $x=1$ and $x=8$					
Find the volume of the solid formed when the curve $y=\frac{\sqrt{x^3-1}}{3}$ is rotated 360° around the x -axis between $x=2$ and $x=$					$\frac{58}{9}\pi$
Find the volume of the solid formed when the curve $y^2 = x\sqrt{x}$ is rotated 2π radians around the x -axis between $x=0$ and $x=2$					$\frac{48\sqrt{2}}{5}\pi$