Transformations of Points on Graphs

(a)

The curve y = f(x) shown below has a minimum point with coordinates (1, -1).

Write down the coordinates of the minimum point of the curve y = f(x) + 3

(b)

The point P (3,2) lies on the curve with equation y=f(x) shown below. Write down the coordinates of the point P on the transformed curve y=-f(x)

(c)

The curve y = f(x) shown below has a maximum point with coordinates (-2, 2).

(d)

The curve y = f(x) shown below has a maximum point with coordinates (0,3).

Write down the coordinates of the maximum point of the transformed curve (i) y = f(2x)

$$(-1, 2)$$

$$(ii) y = f(x+5)$$

(-7, 2)

Write down the coordinates of the maximum point of the transformed curve

$$(i) y = \frac{1}{2}f(x)$$

(0, 1.5)

(ii)
$$y = f(-x)$$

(0,3)

(e)

The curve A with equation y = f(x) is transformed to give the curve B with equation y = f(-x) + 2. The point (1,1) lies on the curve A. What point does this map to on the transformed curve B?

$$(-1,3)$$

(f)

The curve $\mathcal C$ with equation y=f(x) is transformed to give the curve D with equation y=-f(x+1)-2. The point (3,-2) lies on the curve $\mathcal C$. What point does this map to on the transformed curve D?

(2,0)