Question	Tree Diagram	Probability
There are <i>x</i> blue counters and 4 red counters in a bag. Two counters are chosen at random without replacement. Complete the tree diagram and find expressions for each of the probabilities.	$ \begin{array}{c} 2nd Counter \\ \underbrace{x - 1}_{x + 3} \\ \underbrace{x - 1}_{x + 3} \\ \underbrace{x + 3}_{x + 4} \\ \underbrace{x + 3}_{x + 3} \\ \underbrace{x + 3}_{x + 3} \\ \underbrace{x + 3}_{Red} \\ \underbrace{x + 3}_{x + 3} \\ Blue \\ \hline \underbrace{x + 3}_{x + 3} \\ Blue \\ \hline \hline $	$P(BB) = \frac{x}{x+4} \times \frac{x-1}{x+3}$ $P(BR) = \frac{x}{x+4} \times \frac{4}{x+3}$ $P(RB) = \frac{4}{x+4} \times \frac{x}{x+3}$ $P(RB) = \frac{4}{x+4} \times \frac{x}{x+3}$
There are 8 black pens and <i>n</i> green pens in a pencil case. Gloria chooses two pens at random from the pencil case. Complete the tree diagram and find expressions for each of the probabilities.	$ \frac{2 \text{nd Pen}}{2 \text{nd Pen}} $ $ \frac{1 \text{st Pen}}{n+8} Black n \\ n+7 Green \\ \hline n+7 Green \\ \hline n+7 Black \\ \hline n+7 Green \\ \hline n+7 Gre$	$P(BB) = \frac{x+4}{n+8} \times \frac{x+3}{n+7}$ $P(BB) = \frac{8}{n+8} \times \frac{7}{n+7}$ $P(BG) = \frac{8}{n+8} \times \frac{n}{n+7}$ $P(GB) = \frac{n}{n+8} \times \frac{8}{n+7}$ $P(GG) = \frac{n}{n+8} \times \frac{n-1}{n+7}$
There are <i>n</i> biscuits in a tin. There are some digestives and five shortbreads. Ayyan takes two biscuits from the tin at random and eats them. Draw a tree diagram and find expressions for each of the probabilities.	$ \begin{array}{c} $	$P(DD) = \frac{n-5}{n} \times \frac{n-4}{n-1}$ $P(DS) = \frac{n-5}{n} \times \frac{5}{n-1}$ $P(SD) = \frac{5}{n} \times \frac{n-5}{n-1}$ $P(SS) = \frac{5}{n} \times \frac{4}{n-1}$
A jar contains <i>x</i> lime sweets and some pear sweets. The number of pear sweets is one more than the number of lime sweets. Two sweets are chosen at random. Draw a tree diagram and find expressions for each of the probabilities.	$ \begin{array}{c} $	$P(LL) = \frac{x}{2x+1} \times \frac{x-1}{2x}$ $P(LP) = \frac{x}{2x+1} \times \frac{x+1}{2x}$ $P(PL) = \frac{x+1}{2x+1} \times \frac{x}{2x}$ $P(PL) = \frac{x+1}{2x+1} \times \frac{x}{2x}$