Fill in the Blanks

Volumes of Revolution Around the X-Axis

Question	Definite Integral	Integrate	Evaluate Upper and Lower Limits		Volume of Revolution
Find the volume of the solid formed when the curve $y=x^2$ is rotated 360° around the x -axis between $x=1$ and $x=3$	$\pi \int_1^3 x^4 \ dx$	$\pi \left[\frac{x^5}{5} \right]_1^3$	$\frac{243}{5}\pi$	$\frac{1}{5}\pi$	$\frac{242}{5}\pi$
Find the volume of the solid formed when the curve $y=2\sqrt{x}$ is rotated 2π radians around the x -axis between $x=2$ and $x=5$	$\pi \int_{2}^{5} 4x \ dx$	$\pi \left[\frac{4x^2}{2} \right]_2^5$	50π	8π	42π
Find the volume of the solid formed when the curve $y^2=1+\frac{1}{\sqrt{x}}$ is rotated 360° around the x -axis between $x=4$ and $x=9$	$\pi \int_{4}^{9} 1 + x^{-1/2} \ dx$	$\pi \left[x + 2x^{1/2} \right]_4^9$	15π	8π	7π
Find the volume of the solid formed when the curve $y=\frac{1}{2}\sqrt[3]{x}$ is rotated 360° around the x -axis between $x=1$ and $x=8$	$\pi \int_{1}^{8} \frac{1}{4} x^{2/3} dx$	$\pi \left[\frac{3x^{5/3}}{20} \right]_1^8$	$\frac{24}{5}\pi$	$\frac{3}{20}\pi$	$\frac{93}{20}\pi$
Find the volume of the solid formed when the curve $y=\frac{\sqrt{x^3-1}}{3}$ is rotated 2π radians around the x -axis between $x=2$ and $x=4$	$\pi \int_{2}^{4} \frac{1}{9} (x^3 - 1) dx$	$\pi \left[\frac{x^4}{36} - \frac{x}{9} \right]_2^4$	$\frac{20}{3}\pi$	$\frac{2}{9}\pi$	$\frac{58}{9}\pi$
Find the volume of the solid formed when the curve $y^2=6x\sqrt{x}$ is rotated 2π radians around the x -axis between $x=0$ and $x=2$	$\pi \int_0^2 6x^{3/2} dx$	$\pi \left[\frac{12x^{5/2}}{5} \right]_0^2$	$\frac{48\sqrt{2}}{5}\pi$	0	$\frac{48\sqrt{2}}{5}\pi$