Enlargements Using Matrices		
(a)	(b)	(c)
By considering the unit square, determine the matrix which describes an enlargement about the origin with scale factor 3.	represented by the matrix $\left(\begin{array}{cc}\frac{5}{2} & 0 \\ 0 & \frac{5}{2}\end{array}\right)$	Use matrix algebra to show that an enlargement of scale factor 2 about $(0,0)$, followed by an enlargement of scale factor 1.5 about $(0,0)$ is equivalent to an enlargement of scale factor 3 about $(0,0)$.
(d)	(e)	(f)
The point $(-5,3)$ is mapped onto the point (a, b) when enlarged by a scale factor 2 about the origin. Using matrix algebra, find the values of a and b.	The unit square OABC with coordinates $O(0,0), A(0,1), B(1,1)$ and $C(1,0)$ is mapped to $O A^{\prime} B^{\prime} C^{\prime}$ under matrix $\left(\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right)$. Use matrix algebra to find the coordinates of A^{\prime}, B^{\prime} and C^{\prime}.	The point (c, d) is mapped onto the point $(-1,-4)$ when enlarged by a scale factor 0.5 about the origin. Using matrix algebra, find the values of c and d.
(g)	(h)	(i)
Use matrix algebra to show that an enlargement of scale factor 2 about $(0,0)$, followed by an enlargement of scale factor -0.5 about $(0,0)$ is the same as a rotation of 180° about the origin.	The point $(a, 3)$ is mapped to the point $(6,2 a)$ when enlarged with scale factor b about the origin. Use matrix algebra to find the possible values of a and b.	The point $(x-4, y)$ is mapped to the point $(2 y, 2 x-18.5)$ when transformed under the matrix $\left(\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right)$. Find the values of x and y.

