Crack the code Calculating with Bounds

A	The length and width of a rectangle are measured to the nearest metre as 6 m and 5 m . Find the lower bound of the area of the rectangle.	B	A coin is weighed as $30 g$ to the nearest 5 g . Find the upper bound of the weight of 10 coins.
C	The three sides of a triangle are $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 11 cm , all measured to the nearest cm . Find the upper bound of the perimeter of the triangle.	D	A dog weighs 26 kg to the nearest kg . Its puppy weighs 6.5 kg to the nearest 0.5 kg . Find the lower bound of the difference between their weights.
E	A car travels 82 km correct to the nearest $k m$, in 1.5 hours correct to the nearest 0.1 hour. Find the lower bound of the speed in km / h.	F	The area of a square is measured as $60 \mathrm{~cm}^{2}$, correct to 1 significant figure. Find the upper bound of the length of the side of the square.
G	The formula $A=\frac{1}{2} a b \sin C$ is used to find the area of a triangle. $a=12 \mathrm{~cm}, b=9 \mathrm{~cm}$ and angle C is 72°, all correct to 2 significant figures. Find the upper bound of the area A.	H	The density of a wooden block is measured as $1.8 \mathrm{~g} / \mathrm{cm}^{3}$ to the nearest $0.1 \mathrm{~g} / \mathrm{cm}^{3}$ and its volume as $40 \mathrm{~cm}^{3}$ to the nearest $5 \mathrm{~cm}^{3}$. Find the lower bound of the mass of the wooden block in g.
I	The lengths of the right-angled triangle shown are measured correct to 2 significant figures. Find the lower bound of the size of angle x.	J	The cylinder shown has a volume of $400 \mathrm{~cm}^{3}$, correct to the nearest $10 \mathrm{~cm}^{3}$. Its height is 8 cm correct to 1 significant figure. Find the upper bound of the radius of the cylinder.

To get the three-digit code, add all your answers together and round to the nearest integer.

