Crack the Code

Calculating with Bounds

A	The length and width of a rectangle are measured to the nearest metre as $6 m$ and $5 m$. Find the lower bound of the area of the rectangle.	В	A coin is weighed as $30\ g$ to the nearest $5\ g$. Find the upper bound of the weight of $10\ {\rm coins}$.
С	The three sides of a triangle are $5~cm$, $8~cm$ and $11~cm$, all measured to the nearest cm. Find the upper bound of the perimeter of the triangle.	D	A dog weighs $26kg$ to the nearest kg . Its puppy weighs $6.5kg$ to the nearest $0.5kg$. Find the lower bound of the difference between their weights.
E	A car travels $82\ km$ correct to the nearest km , in 1.5 hours correct to the nearest 0.1 hour. Find the lower bound of the speed in km/h .	F	The area of a square is measured as $60\ cm^2$, correct to 1 significant figure. Find the upper bound of the length of the side of the square.
G	The formula $A=\frac{1}{2}ab\sin C$ is used to find the area of a triangle. $a=12\ cm, b=9\ cm$ and angle C is 72° , all correct to 2 significant figures. Find the upper bound of the area A .	н	The density of a wooden block is measured as $1.8\ g/cm^3$ to the nearest $0.1\ g/cm^3$ and its volume as $40\ cm^3$ to the nearest $5\ cm^3$. Find the lower bound of the mass of the wooden block in g .
Ι	The lengths of the right-angled triangle shown are measured correct to 2 significant figures. Find the lower bound of the size of angle x .	J	The cylinder shown has a volume of $400 \ cm^3$, correct to the nearest $10 \ cm^3$. Its height is $8 \ cm$ correct to 1 significant figure. Find the upper bound of the radius of the cylinder.

To get the three-digit code, add all your answers together and round to the nearest integer.