Simplifying Algebraic Indices

Write as a single power of x :					
(a)	$\sqrt{x^3}$	(b)	$\left(\sqrt{x}\right)^3$		
(c)	$\sqrt[3]{x^2}$	(d)	$\sqrt[4]{\chi}$		
(e)	$\left(\sqrt[3]{x}\right)^4$	(f)	$\sqrt{x^5}$		

Write as a single power of x:

(a)
$$\frac{1}{\sqrt[3]{x}}$$
 (b) $\left(\frac{1}{\sqrt[3]{x}}\right)^2$
(c) $\frac{1}{\sqrt{x^3}}$ (d) $\left(\frac{1}{\sqrt{x}}\right)^3$
(e) $\left(\frac{1}{\sqrt[3]{x}}\right)^5$ (f) $\frac{1}{\sqrt[2]{x^7}}$

(a) Given that $u^4 \times \sqrt{u^4}$

$$\frac{y^{-x} \sqrt{y}}{\sqrt{y^5}} = y^a$$

find the value of a.

(b) Given that

$$\frac{1}{\sqrt[3]{y^2}} \times \left(y\sqrt{y}\right)^4 = y^b$$

find the value of b.

(c) Given that

$$\left(\sqrt[2]{y^3}\right)^3 \times \frac{1}{y^c} = \left(y^2 \times \sqrt[4]{y^3}\right)^{-2}$$

find the value of *c*.

Simplifying Algebraic Indices

Write as a single power of <i>x</i> :					
(a)	$\sqrt{x^3}$	(b)	$\left(\sqrt{x}\right)^3$		
(c)	$\sqrt[3]{\chi^2}$	(d)	$\sqrt[4]{x}$		
(e)	$\left(\sqrt[3]{x}\right)^4$	(f)	$\sqrt{x^5}$		

(a) Given that $\frac{y^4 \times \sqrt{y}}{\sqrt{y}}$

$$\frac{y^{1} \times \sqrt{y}}{\sqrt{y^{5}}} = y^{a}$$

find the value of a.

(b) Given that

$$\frac{1}{\sqrt[3]{y^2}} \times \left(y\sqrt{y}\right)^4 = y^b$$

find the value of b.

(c) Given that

$$\left(\sqrt[2]{y^3}\right)^3 \times \frac{1}{y^c} = \left(y^2 \times \sqrt[4]{y^3}\right)^{-2}$$

find the value of *c*.